Name __KW

Review for the Circular Motion and Gravity Test

Make sure you understand all the information on:

Flying Pigs Assignment **Gravity Notes** Level 1 and Level 2 Problems Pendulum Lab Summary of circular motion and gravity Book assignment

Circular Motion and Centripetal Force.

1. Explain the difference between " Δt " and "T."

T= period= time to make I revolution Ot= change in time

Explain the difference between centripetal force and centrifugal force.

force required to move in a circle

Calculate the speed in miles per hour that we travel around the sun if the average radius is 1.5 x 10¹¹ m. (ans. about 66,870 mph) (Yes you do know Tl) Assume circular path at constant speed

$$345d \times \frac{24hr}{1d} \times \frac{3600}{1hr} = 31536000 \quad V = 2HV = \frac{211(1.5\times10^{1}hr)}{31536000} = 29886 \frac{1609}{360} \times \frac{1609}{1hr} \times \frac{36005}{1609}$$

4. Calculate the centripetal force acting on you (mass 60 kg) if you are driving in a circle with a radius of 6.37 meters and it takes you 47 seconds to drive around that circle 10 times. (ans. 683 N)

You (mass 65kg) are at a NASA training center preparing to handle g-forces in space. You get inside a capsule with a radius of 3 meters that spins in a plane that is parallel to the floor. If you spin at 35 miles per hour, how many g's will you experience? (ans. 8.3 g's)

Fe=mv2 = 65(15.042) = 5300N

$$9's = \frac{6300N}{65(9.8)} = \frac{8.39}{8.39}$$

Gravitation

Calculate the gravitational force between the earth and the moon. (The earth and the moon are at an average distance of 3.8 x 108 m apart. The distance includes the radius already! The mass of the moon is on your equation sheet) (ans. $2.03 \times 10^{20} \text{ N}$)

- 7. What happens to the acceleration due to gravity as you go further away from the earth?
- 8. Calculate the acceleration due to gravity on the **moon**. (1.62 m/s^2)

	Name	Hour		
<u>(1)</u>	9. What 2 variables does gravitational force depend on?		distance	_
	12. Calculate the velocity a satellite must have in order to maintain an the earth's surface. (ans. 7,119 m/s) g=(1m) (2) g=(1m)	r=4	,500,000 m above •.37×10°+ 1500	
	(6.44 g-)	,		
	13. Calculate your weight in Newtons and how many g's you would fee Earth) if you were 804,500 m above the surface of Jupiter (mass 1.9 You can assume your mass is 65 kg. (ans. 1,576 N, 2.47 g's) Y=71,492,000 + 804,500 = 7.2297×107	x 10 ²⁷ kg, ra	dius 71,492,000 m). 5 = 1576 10519x
	$g = \frac{Gm}{r^2} = \frac{G(1.9 \times 10^{27})}{(7.2297 \times 10^7)^2} = 24.2 \frac{m}{5^2}$ (1	Fg = M. 576N)	g	U5(9.8) =2.47gs
	14. Calculate the height of a satellite from the center of the Earth (r) if	,	around the earth	at
v 1.050	6928 m/s and the gravity there is 5.78 m/sec ² . (about 8.3 x 10^6 m)	T IS THOVING (aloona me eam	ai
v=49285 g=5.78	\sim /1) \sim ·			
	Pendulums 15. What variable(s) (length, mass, gravity) affect(s) the period of a pendulum backs up your answer. Length - not mass - T- 4tt		plain how the	s !
	length - not mass - 9 16. A friend bets you that you can't make a pendulum with a period of length would you make it and how much mass would you attach to calculations. (ans. 0.25 m, doesn't matter)	f exactly on the end of	e second. What it? Show your	
	T2-4114 muss a	na Her!		
	g 17. Find the length of a pendulum on the MOON (g=1.62 m/s ²) that ha	s a period o	f 2,15 sec.	

2.152=4H2L 1.62

7234112

L=0.19m